Abstract

We investigated the effect of carbon content (0.05, 0.12, and 0.2 wt pct C) and heat-treatment temperature (1100°C and 1300°C for 2 hours and air cooled) on the tensile and the creep properties of Fe-24 wt pct Al alloy. The increase of carbon content increased the yield strength without affecting the tensile ductility of the alloys. Carbon content appears to be beneficial in suppressing the hydrogen embrittlement at the grain boundary, because the fracture mode changes from predominantly intergranular failure in a low carbon (0.05 wt pct C) alloy to a predominantly transgranular cleavage failure in a high carbon (0.2 wt pct C) alloy. With the increase of carbon content, the anomalous yield strength peak shifted to a higher temperature possibly due to the interaction between carbon and vacanies. Significant improvements were noted in the tensile and the creep properties of medium (0.12 wt pct C) and high carbon (0.2 wt pct C) alloys after heat treating at 1300°C. The improvements in the tensile and the creep properties were attributed to the synergetic effect of retained vacancies and fine carbide precipitates present in the alloys after 1300°C heat treatment. However, the improved strength and creep properties associated with 1300 °C heat treatment were lost when the heat-treated alloys were further subjected to a vacancy removal annealing. Our results suggest that the retained vacancies present in the FeAl alloys after high-temperature heat treatment and air cooling are effective in improving the creep resistance at 700°C, and yield strength up to 800°C. The creep resistance of the present high carbon FeAl alloy is comparable to or better than several grades commercial heat-resistant Fe-based and Ni-based alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.