Abstract
In the present work, the effect of carbide density on microstructure, hardness, wear rate, and fatigue limit of AISI H21 die steel has been studied. The specimens of H21 die steel have been employed hardening at 1195 °C, double tempering at 540 °C, cryotreatment at − 185 °C for 24 h, and soft tempering at 100 °C. The microstructure, hardness, wear rate, and fatigue limit of the conventionally treated and cryotreated specimens have been examined. The pin-on-disk machine has been used for the dry sliding wear test. The fatigue test has been carried out using constant amplitude rotating bending fatigue test machine which indicates enhanced fatigue limit for cryotreated specimens. The improvement in hardness, wear behavior, and fatigue limit of cryotreated specimens as a result of increased carbide density with reduced carbide size and retained austenite has been observed. The carbides Fe6W6C, Cr23C6 and Cr7C3 played an important role in increasing the hardness, wear behavior, and fatigue limit of the material. The Basquin’s equation was used for the analysis of the fatigue test. The minimum value of the fatigue strength exponent of Basquin’s equation shows the enhanced fatigue limit of cryotreated specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.