Abstract

The oscillations of a rigid body on an elastic tie (vibrator) in an ideal incompressible fluid with a free boundary, on which surface tension forces act, are considered. The linearized problem of hydrodynamics is solved approximately in the self-consistent formulation, the reaction forces exerted on the body by the fluid are calculated, and an integrodifferential equation of motion is obtained. Using asymptotic methods, the average characteristics determining the damping coefficient and the frequency shift of the oscillations of the vibrator are obtained with allowance for the effect of the capillary waves radiated by the vibrator. Qualitative effects depending on the parameters of the system are revealed. The authors' numerical simulation of the motion of the vibrator completely confirms the qualitative conclusions concerning the nature of the oscillations of a body in a fluid having surface tension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.