Abstract

In the operation of cascaded H-bridge converters and modular multilevel converters with energy storage or renewable power resources, unbalanced active power distribution among the submodules (SMs) is unavoidable. Depending on the operating conditions, there are certain upper and lower limits on the active power that can be processed by a single SM or a subset of SMs. The control system needs to restrict the SM power references to these limits, hence, accurate knowledge of the power limits is important. In existing methods to derive the power limits, the SM capacitor voltages are assumed to have negligible ripples, whereas in practice the ripples can be considerable. This article analyzes the effect of capacitor voltage ripples on the SM active power control limits and highlights the importance of considering the ripple effect. A methodology is proposed to accurately incorporate capacitor voltage ripples in the derivation of SM active power control limits. Simulation and experimental results are provided to evaluate the effectiveness of the proposed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.