Abstract

We have previously shown that inhibition of the ATPase activity of skeletal muscle myosin subfragment 1 (S1) by caldesmon is correlated with the inhibition of S1 binding in the presence of ATP or pyrophosphate (Chalovich, J., Cornelius, P., and Benson, C. (1987) J. Biol Chem. 262, 5711-5716). In contrast, Lash et al. (Lash, J., Sellers, J., and Hathaway, D. (1986) J. Biol. Chem. 261, 16155-16160) have shown that the inhibition of ATPase activity of smooth muscle heavy meromyosin (HMM) by caldesmon is correlated with an increase in the binding of HMM to actin in the presence of ATP. We now show, in agreement, that caldesmon does increase the binding of smooth muscle HMM to actin-tropomyosin while decreasing the ATPase activity. The effect of caldesmon on the binding of smooth HMM is reversed by Ca2+-calmodulin. Caldesmon strengthens the binding of smooth S1.ATP and skeletal HMM.ATP to actin-tropomyosin but to a lesser extent than smooth HMM.ATP. Furthermore, this increase in binding of smooth S1.ATP and skeletal HMM.ATP does not parallel the inhibition of ATPase activity. In contrast, in the absence of ATP, all smooth and skeletal myosin subfragments compete with caldesmon for binding to actin. Thus, the effect that caldesmon has on the binding of myosin subfragments to actin-tropomyosin depends on the source of myosin, the type of subfragment, and the nucleotide present. The inhibition of actin-activated ATP hydrolysis by caldesmon, however, is not greatly different for different smooth and skeletal myosin subfragments. Evidence is presented that caldesmon inhibits actin-activated ATP hydrolysis by attenuating the productive interaction between myosin and actin that normally accelerates ATP hydrolysis. The increased binding seen by some myosin subfragments, in the presence of ATP, may be due to binding of these subfragments to a nonproductive site on actin-caldesmon. The subfragments which show an increase in binding in the presence of ATP and caldesmon appear to bind directly to caldesmon as demonstrated by affinity chromatography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call