Abstract

This study compared the ability of a calcium silicate-, sodium phosphate-, and fluoride-based (CSSPF) toothpaste (TP) in promoting dentinal tubule occlusion and reducing dentin permeability with that of other commercially available antisensitivity TPs. Seventy-eight dentin discs (1.0±0.1 mm thick) were prepared from the midcoronal area and were treated with 37% phosphoric acid for 2 minutes; then they were randomly divided into six groups according to treatments: No treatment [positive control (PC)], entirely covered with nail varnish [negative control (NC)], hydroxyapatite (HAP)-containing TP [Desensin Repair (DES)], NovaMin-based [Sensodyne Repair & Protect (SEN)], CSSPF-based TP [Regenerate Advanced (REG)], sodium monofluorophosphate, potassium citrate, zinc citrate TP [Signal Sensitive Expert (SIG)]. Dentin permeability was tested by the dye percolation method (DP%). Scanning electron microscope (SEM) micromorphological and energy dispersive X-ray elemental analysis (EDX) of the dentin surfaces were done following each treatment. Results were analyzed using one-way analysis of variance (ANOVA) followed by Tukey post hoc test at a 95% confidence level (α=0.05). All the tested groups showed higher DP% than NC and lower percolation than the PC (p<0.05). REG and SIG were statistically comparable, and showed significantly lower DP% (p<0.05) than SEN and DES. None of the TPs tested was able to obliterate the lumen of the dentinal tubules (DT) completely. REG exhibited the highest weight percentage of calcium deposition, followed by SEN. Compared to the tested desensitizing TPs, CSSPF-based TPs demonstrated equal or less dentin permeability and better DT occlusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call