Abstract

BackgroundCalcium signaling and membrane fusion play key roles in exocytosis of drug-containing vesicles through the blood-brain barrier (BBB). Identifying the role of synaptotagmin-like protein4-a (Slp4-a) in the presence of Ca2+ ions, at the pre-fusion stage of a vesicle with the basolateral membrane of endothelial cell, can reveal brain drug transportation across BBB. MethodsWe utilized molecular dynamics (MD) simulations with a coarse-grained PACE force field to investigate the behaviors of Slp4-a with vesicular and endothelial membranes at the pre-fusion stage of exocytosis since all-atom MD simulation or experiments are more time-consuming and expensive to capture these behaviors. ResultsThe Slp4-a pulls lipid membranes (vesicular and endothelial) into close proximity and disorganizes lipid arrangement at contact points, which are predictors for initiation of fusion. Our MD results also indicate that Slp4-a needs Ca2+ to bind with weakly-charged POPE lipids (phosphatidylethanolamine). ConclusionsSlp4-a is an important trigger for membrane fusion in BBB exocytosis. It binds to lipid membranes at multiple binding sites and triggers membrane disruption for fusion in calcium-dependent case. General significanceUnderstanding the prefusion process of the vesicle will help to design better drug delivery mechanisms to the brain through formidable BBB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.