Abstract
ObjectiveMatrix metalloproteinases (MMPs) and cysteine cathepsins (CCs) are two distinct enzymatic pathways responsible for the degradation of collagen fibrils in demineralized dentin. NaF and KF have been shown to inhibit salivary MMP-2, -9 and CCs. This study investigated the inhibitory effect of calcium fluoride (CaF2) on the dentin matrix-bound MMPs and CCs. DesignPhosphoric acid (10%)-demineralized dentin beams (1 × 2×6 mm) were incubated at 37 °C in an 1 ml of artificial saliva (AS, control), or AS with 6, 12, 24, 48, 120. 179 and 238 mM F containing CaF2 (n = 10/group) for 1, 7 and 21 days. All groups were further incubated in AS only for 6 months. Total MMP activity, dry mass loss, CTX and hydroxyproline (HYP) analyses were performed after each incubation. The beams were examined under scanning electron microscopy (SEM). MMP-2 and MMP-9 activities were screened with gelatin zymography. Data were analyzed by using ANOVA and Tukey HSD tests (p = .05). ResultsThe total MMP activity was similar for all groups after 21 days and 6 months. After 21 days, the cumulative mass loss and CTX levels were lower compared to control for the CaF2 ≥48 and CaF2≥120 mM, respectively (p < .05). After 6 months, no significant difference was detected in the dry mass loss and CTX compared to the control (p > .05), whereas HYP level was higher with F 24 and 238 mM groups. CaF2-like minerals were observed on the beams under SEM. There was no gelatinase inhibition in zymography. ConclusionCaF2 does not prevent the degradation of demineralized dentin matrices due to the catalytic activity of MMPs and CCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.