Abstract

Calcium (Ca) plays a vital role as a macronutrient in the growth and development of plants. In order of decreasing solubility, Ca can be found in vegetal tissues as soluble Ca (Fraction I), bound Ca (mainly pectates, Fraction II), inorganic insoluble Ca (mainly phosphates and carbonates, Fraction III) and organic insoluble Ca or oxalate (Fraction IV). To explore the impact of Ca fertilizer application on plant growth and its allocation among different fractions, young citrus trees were fed over a complete vegetative cycle with a 44Ca labeled fertilizer (T1-Ca), while control plants (T2) received no Ca fertilizer. The results showed that plants receiving Ca exhibited significantly greater biomass. 44Ca derived from the fertilizer was localized mainly in sink organs (new flush leaves–twigs and fibrous roots). The primary fraction responsible for total Ca partitioning was Fraction II, followed by Fraction III or IV. Citrus plants, commonly found in calcareous soils, demonstrated improved growth with calcium treatments, indicating a positive link between calcium supplementation and enhanced development. The calcium supplied through the fertilizer (44Ca) was predominantly concentrated in sink organs (mainly in Ca-pectate fraction), including new flush leaves and twigs above ground, as well as fibrous roots below ground.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call