Abstract

The influence of calcium fortification by the addition of calcium chloride on quality parameters of ice cream based on physical properties was investigated, as was the effect of κ-carrageenan at modifying the effects of this calcium fortification. Four ice cream mixes of conventional composition, with added κ-carrageenan (0 or 0.025%) and added calcium chloride (0 or 4.4g L−1 = 40mM of added Ca2+), were prepared. Modulated temperature-differential scanning calorimetry was used to investigate the effect of calcium chloride on the nucleation temperature, enthalpy of melting, and freezing point depression. The protein composition of 15.4% (wt/wt) reconstituted skim milk powder solutions with or without 4.4g L−1 added CaCl2 and in the supernatant after ultracentrifugation was determined. Fat particle size distributions in ice cream were characterized by light scattering. Ice crystal sizes before and after temperature cycling were determined by cold-stage light microscopy. The results demonstrated that the addition of calcium chloride led to a substantial increase in ice crystal sizes and in fat partial coalescence, which were exacerbated by the addition of κ-carrageenan. These results can be explained by the interaction between Ca2+ ions and casein micelles, rather than any effects on freezing point depression. The calcium ions led to a more compact micelle, less serum β-casein, and high fat destabilization, all of which would be expected to reduce macromolecular structure and volume occupancy in the unfrozen phase, which led to increased rates of ice recrystallization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call