Abstract

Calcitriol, the natural ligand for the vitamin D receptor, has significant potential in prostate cancer treatment. Measurement of its antineoplastic activity in prostate cancer clinical trials may be complicated by effects of calcitriol on prostate-specific antigen (PSA) production. We examined the effects of calcitriol at similar concentration on cell proliferation, androgen receptor (AR) expression, and PSA production in vitro and on PSA concentrations in prostate cancer patients. LNCaP prostate cancer cell proliferation was examined by cell counts 6 days after exposure to a range of concentrations of calcitriol. AR and PSA protein was quantified in LNCaP cells over 96 hours after exposure to 1 nmol/L calcitriol. Serum PSA and free PSA was serially measured by immunoassay over a period of 8 days in patients with hormone-naïve prostate cancer after a single dose of 0.5 microg/kg calcitriol. Calcitriol treatment resulted in dose-dependent growth inhibition of LNCaP with approximately 50% growth inhibition at the clinically achievable concentration of 1 nmol/L. Time-dependent up-regulation of AR expression and of PSA production in LNCaP cells was shown at the same concentration. No significant change in serum PSA or free PSA over 8 days was seen in eight subjects treated with a single dose of 0.5 microg/kg calcitriol. The analysis was powered to detect a 1.23-fold change between the baseline and day 8 serum PSA. At clinically achievable concentrations, calcitriol inhibits growth and induces AR and PSA expression in LNCaP cells. We did not detect similar changes in serum PSA or free PSA in patients exposed to similar concentrations of calcitriol. Thus, a PSA flare, predicted by preclinical systems, is unlikely to occur in patients and therefore unlikely to complicate interpretation of clinical trial outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.