Abstract

Abstract The perovskite type lanthanum chromite LaCrO3 has been synthesized by a sol–gel method. Its bulk structural and surface characteristics have been examined by X-ray diffraction (XRD), SEM, SBET measurements, Fourier Transform Infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) as a function of the calcination treatment performed between 200 and 1000 °C over the precursor powder and in correlation with information achieved from TG-DTA thermal analysis. The characterization results are employed to rationalize the catalytic behaviour of the system towards propene complete oxidation. It is shown that the catalytic activity becomes optimized when a single perovskite LaCrO3 phase is achieved upon calcination at T > ca. 700 °C. In contrast, coexistence of perovskite LaCrO3 and monazite LaCrO4 at lower calcination temperatures appears detrimental to the combustion activity of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.