Abstract

γ-Bi2MoO6 catalysts prepared by a co-precipitation method were calcined at various temperatures (425–675 °C), and were applied to the oxidative dehydrogenation of n-butene to 1,3-butadiene in a continuous flow fixed-bed reactor. Conversion of n-butene and yield for 1,3-butadiene were high at low calcination temperature (425–475 °C), but were decreased with increasing calcination temperature (525–675 °C). Temperature-programmed reoxidation (TPRO) measurements revealed that the catalytic performance of γ-Bi2MoO6 was well correlated with the oxygen mobility of the catalyst. Yield for 1,3-butadiene was increased with increasing oxygen mobility of γ-Bi2MoO6 catalyst. Among the catalysts tested, γ-Bi2MoO6 catalyst calcined at 475 °C showed the best catalytic performance due to its facile oxygen mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call