Abstract

Nanophase titania was prepared by sol-gel method and spray pyrolysis. We tried to elucidate the relationship between the photoactivity and the crystallite size of anatase phase. To better understand the changes in the bulk and the surface of titania as the calcination temperature is changed, EPR and photoluminescence analysis were carried out. The effect of the secondary metal oxide embedded into titania matrix on the photoactivity was also investigated. It was found that the photoactivity of titania has a linear relationship to the crystallite size. For the analysis of EPR and photoluminescence for pure titania, the increase of photoactivity with increasing the calcination temperature is due to the formation of surface active sites such as O- as well as the increase of crystallinity resulting from the removal of bulk defects. For silica/titania mixed oxide, it was found that the improvement of the thermal stability of anatase phase is important to enhance the photoactivity of titania because the prepared catalyst was calcined at a higher temperature than 700 °C without forming rutile phase. It was also concluded that the simultaneous increase of the surface area and the crystallinity promises to improve the photoactivity achieved by increasing the content of silica up to 60%. By the analysis of EPR and photoluminescence, it was found that the embedding of silica into titania matrix suppresses the formation of Ti3+ and produces a new active site of Ti-O-Si, which easily interacts with the oxygen. In the investigation of zirconia/titania and alumina/titania mixed oxide, it was found that the increase of the surface OH is essential to positively affect of the improved thermal stability on the photoactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.