Abstract
Purpose Globe valves have good throttling ability, which permits its use in regulating flows. This paper aims to understand in detail the globe valve with different cage configurations and its impact on the flow characteristics that was carried out. Design/methodology/approach The computational study was carried out using FLUENT, a finite volume-based numerical code. Grid sensitivity tests were done and the results were validated experimentally. The effect of cage configuration on flow characteristics and valve coefficient was studied and optimised. Findings Valve coefficient was found to be dependent on cage configuration and reaches its maximum for the valve with triangular shaped aperture. Methodology to improve flow performance of a globe valve with highest valve coefficient is established. Originality/value Studies related with caged-type globe valves having different configurations are useful for improving their flow performance. In the present investigation, globe valves with different cage configurations and throttle positions are modeled to find out the valve coefficient, pressure and velocity contours inside and outside the cage and is validated with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.