Abstract

A combined method of the time-dependent density functional theory (TDDFT) and sum-overstate (SOS) formula was implemented to model multiphoton absorption spectra, including two-photon absorption (2PA) and three-photon absorption (3PA), of Sc(2)C(2)@C(68) and Sc(3)N@C(68) endohedral metallofullerenes (EMFs). This method has been proved to be effective by comparisons between the calculated and experimental results of trans-4,4'-bis[diphenylamino]stilbene. It was found that the multiphoton absorption cross sections were larger for Sc(2)C(2)@C(68) than that of Sc(3)N@C(68). The electronic origin of multiphoton absorption has been identified with respect to the molecular orbitals involved in charge transfer process. It shows that the increase of pi-charges on the cage of C(68) results in a large multiphoton absorption cross section in EMFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.