Abstract

The objective of this study was to identify the effect of cadmium (Cd) contamination on the decomposition of aquatic macrophyte litter and its eutrophic secondary pollution. A laboratory experiment was conducted with three treatments: water Cd contamination (Cd-w), litter Cd contamination (Cd-l) and control (CK). The results showed that CK and Cd-w exhibited the typical decomposition dynamics of litter, i.e., early rapid decomposition followed by slow decomposition, while the litter biomass loss (BL) in Cd-l exhibited an approximately linear relationship with time over the 64-day experimental period. The BL in Cd-l was only 10.8% in the initial 4 days, while that in CK and Cd-w was 59.0% and 54.8%, respectively. Cd inhibited the fluctuation of the water chemical oxygen demand (COD) by reducing both the early increase and the subsequent decrease. The increases in water total nitrogen (TN) and total phosphorus (TP) were inhibited by Cd contamination throughout most of the decomposition period. The alterations of litter quality during the plant growth period and of the bacterial community during the litter decomposition period by Cd contamination could explain the variations in litter decomposition rate and its eutrophic secondary pollution during the early and late decomposition stages, respectively. The Cd inhibition of the eutrophic secondary pollution of aquatic macrophytes has great significance for the improved evaluation of Cd contamination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.