Abstract

Raya (Brassica juncea) and spinach (Spinacia oleracea), grown as leafy vegetables, are known to accumulate large amounts of heavy metals in their shoots and roots because of their high biomass and root proliferation. In a pot experiment, a sandy loam soil was polluted with cadmium (Cd) at rates of 0, 5, 10, 20, 40 and 80 mg kg−1 soil to assess the accumulation pattern and its effect on the dry matter yield and mineral composition of these vegetables. There was a decrease in dry matter yield due to the phytotoxic effect of Cd. The rate of Cd application at which a significant decline in root and shoot dry matter yield occurred varied depending on the vegetable. It was 20 mg Cd kg−1 soil in the shoots for both crops. However, the roots of raya were found to be more tolerant of Cd toxicity than those of spinach, as is evident from the fact that a significant decline in dry matter yield occurred at 20 and 10 mg Cd kg−1 soil, respectively. Since no visual toxic symptoms were observed on the leaves of raya in any of the treatments, it is clear that the metal may accumulate in this vegetable without visual evidence of its presence. However, at application levels beyond 40 mg kg−1 soil, toxicity symptoms, in the form of interveinal chlorosis of the leaf lamina followed by necrosis and leaf rolling, were clearly evident in the case of spinach. The reduction in root and shoot growth corresponded with the amounts of extractable Cd in the soils. The total content of Cd in the crops increased gradually as the rate of applied Cd rose and the roots accumulated much higher amounts than the shoots. The relationship of Cd with Zn and Fe was synergistic in both roots and shoots at the lower rates, but antagonistic at higher Cd application rates for both the crops, while in the case of Mn and Cu, the relationship was negative and antagonistic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.