Abstract

In this study, the static response and dynamic modal properties of a cable-stayed bridge with a main span of 1088m under strong winds are addressed focusing on the effect of cable vibration on overall bridge behavior. Two modeling systems for stay cables are considered in the finite element modeling of the overall bridge, i.e., one element cable system (OECS) and multiple element cable system (MECS). The aerostatic analysis under varying wind speeds and angles of attack is conducted with an iterative procedure taking into account the nonlinearities of wind forces and cables. The modal analysis is then performed under the statically deformed conditions to quantify the changes in bridge modal properties with increasing wind speed. The analysis results are further compared with the measurements using a full aeroelastic bridge model in a wind tunnel. The results of this study revealed the importance of using the MECS for accurate modeling and response prediction of long span cable-stayed bridges to strong winds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.