Abstract

The effect of C60 molecular rotation on the nanotribological properties of C60 single crystal surfaces has been studied by atomic/frictional force microscopy. The orientational order-disorder phase transition, in which the high temperature C60 free rotation is reduced to a low temperature hindered rotation, is shown to give rise to an abrupt change in friction and adhesion. This change in frictional force is quantitatively consistent with the observed change in adhesion. The similar slopes of the friction versus load curves in both phases indicate that the friction coefficient in the two phases remains about the same. Hence the C60 rotation does not provide an additional energy dissipation channel in the friction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.