Abstract
The main focus of this study was to evaluate the operational stability and changes in microbial interactions of aerobic granular sludge (AGS) systems at reduced C/N (16, 8 and 4). The results showed that the removal efficiency of total nitrogen and total phosphorus decreased from 95.99 ± 0.93% and 84.44 ± 0.67% to 48.46 ± 1.92% and 50.93 ± 2.67%, respectively, when C/N was reduced from 16 to 4. The granule settling performance and stability also deteriorated. Molecular ecological network analysis showed that the reduction of the C/N ratio made the overall network as well as the subnetworks of the Proteobacteria and Bacteroidota more complex and tightly connected. Similarly, the subnetworks of two dominant genera (Thiothrix and Defluviicoccus) became more complex as the C/N decreased. Meanwhile, the decreased C/N ratio might promote competition among microbes in these overall networks and subnetworks. In conclusion, reduced C/N added complexity and tightness to microbial linkages within the AGS system, while increased competition between species might have contributed to the deterioration in pollutant removal performance. This study adds a new dimension to our understanding of the effects of C/N on the microbial community of AGS using a molecular ecological network approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.