Abstract

Polymerization-induced self-assembly (PISA) is an efficient and versatile method to afford polymeric nano-objects with polymorphic morphologies. Compared to dispersion PISA syntheses based on soluble monomers, the vast majority of emulsion PISA formulations using insoluble monomers leads to kinetically-trapped spheres. Herein, we present aqueous emulsion PISA formulations generating worms and vesicles besides spheres. Two monomers with different butyl groups, n-butyl (nBHMA) and tert-butyl (tBHMA) α-hydroxymethyl acrylate, and thus possessing different water solubilities were synthesized via Baylis-Hillman reaction. Photoinitiated aqueous emulsion polymerizations of nBHMA and tBHMA employing poly(ethylene glycol) macromolecular chain transfer agents (macro-CTAs, PEG45-CTA, and PEG113-CTA) at 40 °C were systematically investigated to evaluate the effect of monomer structure and solubility on the morphology of the generated block copolymer nano-objects. Higher order morphologies including worms and vesicles were readily accessed for tBHMA, which has a higher water solubility than that of nBHMA. This study proves that plasticization of the core-forming block by water plays a key role in enhancing chain mobility required for morphological transition in emulsion PISA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call