Abstract

In the direct Mannich reaction and synthesis of α,β-unsaturated ketones, the use of organobismuth complexes as catalysts leads to high diastereoselectivity and products of single trans conformation. In this paper, we illustrate the relationship between structure and catalytic activity as well as diastereoselectivity of organobismuth complexes having a 5,6,7,12-tetrahydrodibenz [c,f][1,5]thiobismocine framework as well as bearing a butterfly-shaped sulfur-bridged ligand and tunable anions. With the exposed bismuth center acting as a Lewis acid site and the uncoordinated lone pair electrons of sulfur as a Lewis base site, the cationic organobismuth complexes work as bifunctional Lewis acid/base catalysts. Due to the steric influence of the butterfly-shaped structure and synergistic effect of Lewis acid and Lewis base centers, the complexes can direct substrate attack in organic synthesis. By adjusting the electron-withdrawing ability of the counter anions, the S-Bi bond strength can be regulated, leading to a significant change in Lewis acidity and Lewis basicity as well as catalytic activity. Through synergistic modulation of the above effects, one can control the diastereoselectivity of the organobismuth complexes for the generation of a single diastereoisomer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.