Abstract

A manifestation of hydrogen bonding between the dication and anions attributed to their relative position of the anions around the cation can influence both the conformational equilibrium and the physical properties of ionic liquids. With this view, we studied the electronic structure and normal frequencies using density functional theory calculations to analyze the hydrogen-bonding interactions in dicationic ionic liquids. The conformers are distinguished based on the hydrogen-bonding sites of the cation and anion. The weak hydrogen bonding between the dication and anions in dication ionic liquids can lead to greater conformational equilibrium compared to the monocation system. Consequences of these interactions for the vibrational spectrum are analyzed to provide an insight into the conformational equilibrium in dicationic ionic liquids at the molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call