Abstract

ObjectivesTo investigate differences in the surface properties and microbial adhesion of denture base resins for digital light processing (DLP) with varying resin layer thicknesses (LT), build angles (BA), and resin viscosities. MethodsTwo denture base resins for DLP with different viscosities (high and low) were used to prepare disk specimens applying two manufacturing parameters: 1) LT (50 or 100 μm) and 2) BA (0-, 45-, and 90-degree). Surface roughness and contact angle values were measured on the test surfaces (n=10 per group). Streptococcus oralis and Candida albicans absorbance was measured to assess microorganism attachment (n=6 per group). A three-way analysis of variance (ANOVA) was conducted, considering the main effects and their interactions (viscosity, LT, and BA). Post-hoc multiple pairwise comparisons were performed. All data were analyzed at a level of significance (P) of 0.05. ResultsLT and BA significantly affected the surface roughness and contact angle of the specimens, depending on resin viscosity (P<.001). Absorbance measurement showed no significant interaction between the three factors (P>.05). However, significant interactions were observed between viscosity and BA (P<.05) and between LT and BA (P<.05). ConclusionsRegardless of the viscosity and LT, discs with a 0-degree BA showed the least roughness. High-viscosity specimens fabricated with a 0-degree BA had the lowest contact angle. Regardless of the LT and viscosity, discs with a 0-degree BA showed the lowest S. oralis attachment. Attachment of C. albicans was the least on the disk with 50 μm LT, irrespective of the viscosity. Clinical significanceClinicians should consider the effects of LT and BA on surface roughness, contact angle, and microbial adhesion of DLP-generated dentures, which can differ depending on resin viscosity. A 50 μm LT and 0-degree BA can be used with a high-viscosity resin to fabricate denture bases with less microbial adhesion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.