Abstract
The interaction of celecoxib (Celox) with cyclodextrins (CDs) has been investigated by phase solubility techniques. In this study, the influences of CD type, pH, buffer type, buffer concentration and temperature on the tendency of Celox to form inclusion complexes with CDs were examined. The tendency of Celox to complex with CDs is in the order HP-β-CD > β-CD > γ-CD > α-CD, where the complex formation constants (K11) were 1377, 693, 126 and 60 M−1, respectively. Also ionization of the slightly acidic Celox (pKa=9.7) was found to reduce its tendency to complex (i.e., The K11 values of Celox/β-CD in 0.05 M phosphate buffer were 976 and 210 M−1 for neutral and ionized Celox, respectively). Increasing citrate and phosphate buffer concentration enhances the tendency of ionized Celox to complex with β-CD as a result of a corresponding decrease in the inherent solubility (S0) of the Celox anion. On the other hand, these two buffers interact differently with neutral Celox and β-CD, where increasing phosphate buffer concentration at low pH enhances the complexation of neutral Celox by lowering S0, while increasing citrate buffer concentration at low pH reduces complex formation as citrate buffer species, mainly citric acid, act as a solublizer and a competitor for Celox and β-CD. The contribution of Celox hydrophobicity for complex stability constitutes about 77% of the driving force for complex stability. The complex formation of neutral Celox with β-CD (ΔG0=−28.6 kJ/mol) is driven by both enthalpy (ΔH0=−21.7 kJ/mol) and entropy (ΔS0=23.3 J/mol K) changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inclusion Phenomena and Macrocyclic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.