Abstract
The surface morphology of GaN is observed by atomic force microscopy for growth on GaN and AlN buffer layers and as a function of III/V flux ratio. Films are grown on sapphire substrates by molecular beam epitaxy using a radio frequency nitrogen plasma source. Growth using GaN buffer layers leads to N-polar films, with surfaces strongly dependent on the flux conditions used. Flat surfaces can be obtained by growing as Ga-rich as possible, although Ga droplets tend to form. Ga-polar films can be grown on AlN buffer layers, with the surface morphology determined by the conditions of buffer layer deposition as well as the III/V ratio for growth of the GaN layer. Near-stoichiometric buffer layer growth conditions appear to support the flattest surfaces in this case. Three defect types are typically observed in GaN films on AlN buffers, including large and small pits and “loop” defects. It is possible to produce surfaces free from large pit defects by growing thicker films under more Ga-rich conditions. In such cases the surface roughness can be reduced to less than 1 nm RMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: MRS Internet Journal of Nitride Semiconductor Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.