Abstract

Diisopropylammonium bromide (DIPAB) molecular ferroelectric crystals were synthesized and examined to exhibit a large electric polarization (∼23μC/cm2), a large dielectric constant in the α-phase. Although the PXRD pattern indicates that the α-DIPAB sample has an overall excellent crystallinity, our analysis of its FT-IR and Raman vibrational spectra suggests the presence of disorder in the synthesized crystals as indicated by the presence of broad features in the Raman spectrum. Using vdW+DF2 calculations, we identified the majority of vibrational modes in the experimental spectra and analyzed the ones due to Br-disorder. We found that the bromine (Br) deficiency strongly affects the electric properties of α-DIPAB. Particularly, the experimentally measured dielectric constant of α-DIPAB is large (∼20), whereas the DFT-based calculations of the ideal DIPAB give much smaller values (∼2-3). We find that Br-deficiency is responsible for large dielectric constant of the DIPAB crystal with calculated value of ∼15-20. Furthermore, we showed that the van der Waals forces have a slight effect on the structural parameters, only causing a small shift in the vibrational frequencies. The main vibrational features of the DIPAB crystal in the Raman spectrum were shown to be driven by covalent bonding in the DIPA molecules and hydrogen bonds between the molecules with Br.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.