Abstract
Br(-) and nitrogen-containing organic pollutants, such as amino acids, protein, etc., were often detected in water and wastewater treatment plants using advanced oxidation technologies. All these technologies have one common characteristic, that is, the removal processes involve ·OH. Therefore, it is necessary to study the different reaction pathways among ·OH, Br(-), and amino acids. In this research, glycine was chosen as the representative of amino acids and H2O2 was selected as ·OH precursor. Results showed that Br(-) had a shielding effect on [Formula: see text] of α-carbon in glycine, when it was abstracted by ·OH. The main reaction pathway in the system containing Br(-) was the abstraction of H from amino group in glycine by ·OH, contributing 85% of total abstracted H. This system had a prominent phenomenon of decarboxylation and performed as alkali production dominating. However, in the system not containingBr(-), the main reaction pathway was the abstraction of H from α-carbon in glycine by ·OH, contributing 97% of total abstracted H. This system performed as acid production dominating. By laser flash photolysis, the second-order rate constants of abstraction of H from both α-carbon and amino group in glycine by ·OH were obtained as (3.3 ± 0.5) × 10(7) M(-1)·s(-1) and (8.2 ± 0.8) × 10(8)M(-1)·s(-1), respectively. The second-order rate constants of the reaction between [Formula: see text], HṄCH2COO(-) and H2O2 were (1.5 ± 1.1) × 10(7)M(-1)·s(-1) and (4.4 ± 0.3) × 10(7)M(-1)·s(-1), respectively. In addition, Br(-) was found to play a catalytic role in the decomposition of H2O2 under UV radiation. The results mentioned above were significant for the application of advanced oxidation technologies for water containing both amino acids and Br(-) in water and wastewater treatment plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.