Abstract

To investigate the effect of breathing motion and dose accumulation on the planned radiotherapy dose to liver tumors and normal tissues using deformable image registration. Twenty-one free-breathing stereotactic liver cancer radiotherapy patients, planned on static exhale computed tomography (CT) for 27-60 Gy in six fractions, were included. A biomechanical model-based deformable image registration algorithm retrospectively deformed each exhale CT to inhale CT. This deformation map was combined with exhale and inhale dose grids from the treatment planning system to accumulate dose over the breathing cycle. Accumulation was also investigated using a simple rigid liver-to-liver registration. Changes to tumor and normal tissue dose were quantified. Relative to static plans, mean dose change (range) after deformable dose accumulation (as % of prescription dose) was -1 (-14 to 8) to minimum tumor, -4 (-15 to 0) to maximum bowel, -4 (-25 to 1) to maximum duodenum, 2 (-1 to 9) to maximum esophagus, -2 (-13 to 4) to maximum stomach, 0 (-3 to 4) to mean liver, and -1 (-5 to 1) and -2 (-7 to 1) to mean left and right kidneys. Compared to deformable registration, rigid modeling had changes up to 8% to minimum tumor and 7% to maximum normal tissues. Deformable registration and dose accumulation revealed potentially significant dose changes to either a tumor or normal tissue in the majority of cases as a result of breathing motion. These changes may not be accurately accounted for with rigid motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.