Abstract

An expression is derived for the photoelectron angular distribution (PAD) following (1+1′) resonance-enhanced multiphoton ionization (REMPI) of a molecule with linearly polarized light beams. When the two polarization vectors are parallel, cylindrical symmetry exists, and the PAD depends only on θ, the angle between the linear polarization vector of the ionizing radiation and the electron ejection direction. When the polarization vectors are perpendicular, cylindrical symmetry is broken, and the PAD shows φ and θ dependence. For an arbitrary angle between the two polarization vectors, the angular distribution ceases to have reflection symmetry. This breaking of cylindrical symmetry causes interference effects in the REMPI process that are readily described using a density matrix formalism. As an example, the (1+1′) REMPI of NO via its A 2Σ+ state is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.