Abstract
AbstractA series of poly(butyl acrylate) samples were prepared by emulsion polymerization with a range of molecular weights and degrees of chain branching. Characterization was performed with NMR (giving the fraction of branching, ranging from approximately 0 to 7%), gel permeation chromatography, viscometry, and determination of the gel fraction. The dynamic mechanical response, that is, the frequency dependence of the storage and loss moduli G′(ω) and G″(ω) was measured from 0.02 to 200 Hz. The occurrence of a significant insoluble fraction in the sample meant that full characterization of the molecular weight distribution was not possible, and so an unambiguous separation of the dependencies of the mechanical response on the degree of long‐chain branching (LCB) and short‐chain branching (SCB) and the molecular weight could not be made; however, trends dependent on the molecular weight alone were insufficient to model the results. At high frequencies, all trends in G′(ω) and G″(ω) could be ascribed to molecular weight dependencies; at low frequencies, the effects of both the molecular weight and total degree of branching could be inferred, with more highly branched samples showing lower storage and loss moduli. Although the relative amounts of SCB and LCB could not be determined, no dynamic features attributable to LCB were observed. The low‐frequency trends could be semiquantitatively fitted with reptation and retraction theory if it was assumed that an increased degree of SCB led to an increased tube size. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3335–3349, 2002
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.