Abstract

This study investigated the effect of branched-chain amino acid (BCAA) supplementation on recovery from eccentric exercise. Twenty males ingested either a BCAA supplement or placebo (PLCB) prior to and following eccentric exercise. Creatine kinase (CK), vertical jump (VJ), maximal voluntary isometric contraction (MVIC), jump squat (JS) and perceived soreness were assessed. No significant (p > 0.05) group by time interaction effects were observed for CK, soreness, MVIC, VJ, or JS. CK concentrations were elevated above baseline (p < 0.001) in both groups at 4, 24, 48 and 72 hr, while CK was lower (p = 0.02) in the BCAA group at 48 hr compared to PLCB. Soreness increased significantly from baseline (p < 0.01) in both groups at all time-points; however, BCAA supplemented individuals reported less soreness (p < 0.01) at the 48 and 72 hr time-points. MVIC force output returned to baseline levels (p > 0.05) at 24, 48 and 72 hr for BCAA individuals. No significant difference between groups (p > 0.05) was detected for VJ or JS. BCAA supplementation may mitigate muscle soreness following muscle-damaging exercise. However, when consumed with a diet consisting of ~1.2 g/kg/day protein, the attenuation of muscular performance decrements or corresponding plasma CK levels are likely negligible.

Highlights

  • Skeletal muscle damage induced by resistance-based exercise is known to promote microdamage in muscle fibers, which may lead to temporary increased passive tension, delayed onset muscle soreness (DOMS), decrements in strength and force production, and increased efflux of intramuscular proteins into the blood [1]

  • Jackman et al [15] reported only reductions in soreness when individuals were supplemented with 29.2 g of branched-chain amino acids (BCAA) per day or a placebo after a damaging bout of exercise

  • While we found no differences in vertical jump height or loaded jump squat peak power between groups, maximal voluntary isometric contraction (MVIC) force recovery was significantly recovered at 24, 48 and 72 hr post-exercise time-points for the BCAA

Read more

Summary

Introduction

Skeletal muscle damage induced by resistance-based exercise is known to promote microdamage in muscle fibers, which may lead to temporary increased passive tension, delayed onset muscle soreness (DOMS), decrements in strength and force production, and increased efflux of intramuscular proteins into the blood [1]. It has been suggested that BCAA supplementation may reduce protein degradation and/or muscle enzyme release [2,3,8], decrease skeletal muscle damage in response to intense resistance exercise [9,10,11], reduce feelings of soreness [12], mitigate central fatigue [13,14] and promote subsequent recovery of muscle function [10,15]; these findings remain inconclusive at present [15,16,17]. Sharp and colleagues [11] supplemented eight recreationally active men with either a placebo or 6 g of BCAA for three weeks and reported a reduction in CK levels 12 and 36 hr after completing two days of intense resistance exercise. Foure et al [16] found that muscle soreness and MVIC in 26 recreationally active men were not affected by 0.1 g/kg of BCAA ingested pre- and post-damaging neuromuscular electrostimulation exercise

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call