Abstract

To assess the effect of brain blood flow on hypoxic ventilatory response, we measured arterial and internal jugular venous blood gases and ventilation simultaneously and repeatedly in eight healthy male humans in two settings: 1) progressive and subsequent sustained hypoxia, and 2) stepwise and progressive hypercapnia. Ventilatory response to progressive isocapnic hypoxia [arterial O2 partial pressure 155.9 +/- 4.0 (SE) to 46.7 +/- 1.5 Torr] was expressed as change in minute ventilation per change in arterial O2 saturation and varied from -0.16 to -1.88 [0.67 +/- 0.19 (SE)] l/min per % among subjects. In the meanwhile, jugular venous PCO2 (PjCO2) decreased significantly from 51.0 +/- 1.1 to 47.3 +/- 1.0 Torr (P less than 0.01), probably due to the increase in brain blood flow, and stayed at the same level during 15 min of sustained hypoxia. Based on the assumption that PjCO2 reflects the brain tissue PCO2, we evaluated the depressant effect of fall in PjCO2 on hypoxic ventilatory response, using a slope for ventilation-PjCO2 line which was determined in the second set of experiments. Hypoxic ventilatory response corrected with this factor was -1.31 +/- 0.33 l/min per %, indicating that this factor modulated hypoxic ventilatory response in humans. The ventilatory response to progressive isocapnic hypoxia did not correlate with this factor but significantly correlated with the withdrawal test (modified transient O2 test), which was performed on a separate day. Accordingly we conclude that an increase in brain blood flow during exposure to moderate hypoxia may substantially attenuate the ventilatory response but that it is unlikely to be the major factor of the interindividual variation of progressive isocapnic hypoxic ventilatory response in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call