Abstract
Effect of bovine serum albumin (BSA) on the temperature-dependent association behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers was investigated using pyrene fluorescence spectroscopy. The critical micellization temperature (CMT) of pluronics in aqueous solution was increased by the addition of BSA. A closed association model was used to obtain the standard free energies (Delta G(0)), enthalpies (Delta H-0), and entropies (Delta S-0) of micellization. The standard enthalpy and entropy of micellization for pluronic polymers in water were decreased with an increase of the BSA content. The more PPO component in the pluronic polymer, the higher the changed values of micellization enthalpy and entropy. The hydrophobic part of the pluronics, PPO, was responsible for the interaction between pluronics and BSA. Hydrophobic interaction between PPO and BSA was correlated to the alternation of the PPO-PPO interaction by the addition of BSA, which would shift the CMT toward higher temperature and alter the thermodynamic parameters of micellization for pluronics in aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.