Abstract

The numerical solution of the time-dependent Navier–Stokes equations in terms of the vorticity and a stream function is a well tested process to describe two-dimensional incompressible flows, both for fluid mixing applications and for studies in theoretical fluid mechanics. In this paper, we consider the interaction between the unsteady advection–diffusion equation for the vorticity, the Poisson equation linking vorticity and stream function and the approximation of the boundary vorticity, examining from a practical viewpoint, global iteration stability and error. Our results show that most schemes have very similar global stability constraints although there may be small stability gains from the choice of method to determine boundary vorticity. Concerning accuracy, for one model problem we observe that there were cases where the boundary vorticity discretization did not propagate to the interior, but for the usual cavity flow all the schemes tested had error close to second order. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.