Abstract

Results of numerical investigation of the boundary layer thickness on turbulent separation and heat transfer in a tube with an abrupt expansion are shown. The Menter turbulence model of shear stress transfer implemented in Fluent package was used for calculations. The range of Reynolds numbers was from 5·103 to 105. The air was used as the working fluid. A degree of tube expansion was (D2/D1)2 = 1.78. A significant effect of thickness of the separated boundary layer both on dynamic and thermal characteristics of the flow is shown. In particular, it was found that with an increase in the boundary layer thickness the recirculation zone increases, and the maximum heat transfer coefficient decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.