Abstract

The pressure behind a shock wave propagating in a constant-area duct increases slightly with time as a result of the growing boundary layer. This rise is considerably magnified by the shock reflection from the closed end of the duct. Analysis of the local interaction of the reflected shock with the boundary layer yields information on the shock configuration, but the combined effects of the waves produced by the growing boundary layer along the entire shock tube must be considered to obtain the state of the gas behind the reflected shock. The theory of the flow field behind the incident shock is modified to allow for effects in addition to boundary-layer growth which cause deviations from an ideal shock-tube flow. Experimental observations of the pressure rise behind the reflected shock, obtained for shock pressure ratios up to about 4.5 are in satisfactory agreement with the computed results, and estimates for stronger shock waves are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.