Abstract

This study investigates the welding residual stress and distortion in T-joint welds under various mechanical boundary conditions. An experimentally calibrated and sequentially coupled thermal and mechanical 3D finite element (FE) model is developed, and Goldak's double ellipsoidal heat source model is implemented into the numerical model. The results show that the transverse residual stress, vertical displacement, angular distortion and transverse shrinkage depend significantly on the mechanical boundary conditions, and the influence on the longitudinal residual stress is not significant. Applying the clamped condition along the edges during the welding process and releasing it after the T-joint cools down to ambient temperature can significantly reduce the welding-induced geometric imperfections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.