Abstract
Symmetrical push-pull low-cycle fatigue (LCF) tests were performed on INCONEL 718 (IN718) containing 12, 29, 60, and 100 ppm B at 650 °C. The results showed that all the alloys experienced a relatively short period of initial cyclic hardening at low strain amplitudes, followed by a regime of saturation or slightly continuous cyclic softening. The initial cyclic hardening phase decreased with increasing strain amplitudes, and disappeared at the high strain amplitudes. A serrated flow was observed in the plastic regions of cyclic stress-strain hysteresis loops. The saturated cyclic stress amplitude at a given strain amplitude was highest for the alloy with 60 ppm B, and lowest for the alloy with 12 ppm B. The LCF lifetime increased with increasing B concentration up to 60 ppm, and then decreased as the B content increased from 60 to 100 ppm. Fractographic analysis suggested that the fracture mode changed from intergranular to transgranular cracking as the B concentration increased. The characteristic deformation microstructures produced by LCF tests at 650 °C, examined via transmission electron microscopy, were regularly spaced arrays of planar deformation bands on {111} slip planes in all four alloys. A ladderlike structure was observed in some local regions in the alloy with 12 ppm B. Heavily deformed planar deformation bands were observed in the fatigued specimens with 100 ppm B. The mechanism of improvement in the LCF life of IN718 due to B addition is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.