Abstract
The reason for the effective removal of interface traps in SiO2/4H-SiC (0001) structures by boron (B) incorporation was investigated by employing low-temperature electrical measurements. Low-temperature capacitance–voltage and thermal dielectric relaxation current measurements revealed that the density of electrons captured in slow interface traps in B-incorporated oxide is lower than that in dry and NO-annealed oxides. These results suggest that near-interface traps can be removed by B incorporation, which is considered to be an important reason for the increase in the field-effect mobility of 4H-SiC metal–oxide–semiconductor devices. A model for the passivation mechanism is proposed that takes account of stress relaxation during thermal oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.