Abstract

A series of CdS/Si heterostructures were prepared through growing B-doped CdS thin films on silicon nanoporous pillar array (Si-NPA) by a chemical bath deposition (CBD) method. The experimental data show that B-doping concentration of CdS thin films could be tuned effectively through controlling the mole ratio of [B]/[Cd] of the initial CBD solution without causing obvious variation of the crystal phase and surface morphology of CdS/Si-NPA. Both the electrical rectification and photovoltaic parameters of CdS/Si-NPA show strong dependence upon B-doping concentration, and the optimal characteristics are achieved for the samples prepared with [B]/[Cd] = 0.01. Compared with CdS/Si-NPA solar cells without B-doping, an increment over 300 times for energy conversion efficiency is realized. The mechanism for the efficiency increment is analyzed based on the effect of B-doping on the band structure of CdS/Si-NPA. These results indicate that B-doping might be an effective path for promoting the device performance of solar cells based on CdS/Si-NPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call