Abstract

In this study eight different phosphate-based glass compositions were prepared by melt-quenching: four in the (P2O5)45-(CaO)16-(Na2O)15-x -(MgO)24-(B2O3)x system and four in the system (P2O5)50-(CaO)16-(Na2O)10-x-(MgO)24-(B2O3)x, where x = 0,1, 5 and 10 mol%. The effect of B2O3 addition on the thermal properties, density, molar volume, dissolution rates, and cytocompatibility were studied for both glass systems. Addition of B2O3 increased the glass transition (T g), crystallisation (T c), melting (T m), Liquidus (T L) and dilatometric softening (T d) temperature and molar volume (V m). The thermal expansion coefficient (α) and density (ρ) were seen to decrease. An assessment of the thermal stability of the glasses was made in terms of their processing window (crystallisation onset, T c,ons minus glass transition temperature, T g), and an increase in the processing window was observed with increasing B2O3 content. Degradation studies of the glasses revealed that the rates decreased with increasing B2O3 content and a decrease in degradation rates was also observed as the P2O5 content reduced from 50 to 45 mol%. MG63 osteoblast-like cells cultured in direct contact with the glass samples for 14 days revealed comparative data to the positive control for the cell metabolic activity, proliferation, ALP activity, and morphology for glasses containing up to 5 mol% of B2O3.

Highlights

  • There is a continually growing interest in the use of glasses for varying biomedical applications

  • SiO2-Na2O-B2O3-CaO-MgO-Al2O3-P2O5 and found that the onset of crystallisation temperature increased as Na2O was replaced with B2O3 [15]

  • A very recent study was carried out to observe the effect of boron (0, 1, 10, 100, and 1000 ng/mL) on osteogenic differentiation of human bone marrow stromal cells (BMSCs), and the results indicated that BMSCs treated with 10 and 100 ng/mL boron presented a higher ALP activity compared to the control [42]

Read more

Summary

Introduction

There is a continually growing interest in the use of glasses for varying biomedical applications. The first bioactive glass reported was bioglass discovered by Professor Larry Hench in 1969 [2]. An alternate system of glasses for biomedical applications is totally silica free phosphate-based glasses (PBGs). These PBGs have the property of being completely soluble in aqueous medium, and their degradation rate can be altered via addition of different modifier oxides. These unique physical and chemical properties of PBGs have attracted huge interest in their use within the field of biomaterials and tissue engineering [4,5,6]

Objectives
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call