Abstract
An in-depth analysis of the effect of boron addition on the microstructure of the equiatomic AlCoCrFeNi High Entropy Alloy (HEA) was performed. Alloys with nominal compositions AlCoCrFeNiB0.1 and AlCoCrFeNi were produced and analyzed by multi-scale characterization techniques, including X-ray diffraction, scanning and transmission electron microscopy coupled with TEM-based orientation mapping technique. CALPHAD simulation was carried out to understand the solidification sequence and the phase stability of the studied alloys. The equiatomic AlCoCrFeNi alloy forms a mixture of an Al-Ni rich B2 phase with a Fe-Cr rich body centered cubic (BCC) phase; small face centered cubic (FCC) islands were also observed. The boron addition leads to the formation of needle-like Cr-rich borides with an orthorhombic structure. Moreover, this addition changes considerably the solidification sequence in later stages of the solidification process, resulting in a more complex microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.