Abstract

Focusing on the serious volatilization of MoO3 in super austenitic stainless steel with a high Mo content, the influence of B on the formation of oxide film and the distribution of Cr and Mo was investigated at 900 °C and 1000 °C. Without the addition of B, Mo tends to diffuse to the surface, forming porous Cr/Mo-rich oxides, causing the volatilization of Mo. The addition of B can inhibit the diffusion of Mo to the surface, facilitate the diffusion of Cr to the surface and combines with O, providing conditions for the nucleation of Cr2O3. A large amount of Cr2O3 accumulated on the surface to form a dense passive film, which inhibited the diffusion of Mo to the surface, reduced the loss of Mo, and formed Mo/Cr-rich precipitates at grain boundaries that are close to the surface. However, it was difficult to form Mo-rich precipitates at the grain boundaries of a sample without B, which aggravated the volatilization of Mo from grain boundary to surface. Therefore, the addition of B can improve the oxidation resistance of 254SMO and inhibit the volatilization of Mo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.