Abstract

The composition of bone marrow is influenced by many factors, such as age and diseases. The present numerical study investigates the contribution of marrow on the acoustic measurements of trabecular bone. Cylindrical bone samples ( n = 11), extracted from three anatomical sites of human cadaver knees, were imaged with a high-resolution microtomography (microCT). Three-dimensional finite difference time domain (FDTD) models (Wave 3000 Pro 2.2, Cyberlogic Inc., NY, USA) were created using the segmented microCT images of each sample. First, we evaluated the effect of voxel size on the computer resource requirements, morphological parameters and acoustic simulations. Second, the effect of bone marrow on ultrasonic measurements was assessed. The simulations were repeated with two voxel sizes before and after substitution of bone marrow ( i.e., fat) with water. The voxel size of the FDTD mesh controlled the fine structure of the modeled calcified matrix and significantly affected the simulation results. However, present simulations showed that the effect of bone marrow on ultrasound parameters can be reliably simulated with the applied voxel sizes of 72 and 90 μm. Ultrasound attenuation and speed were found ( p < 0.01) to decrease and increase, respectively, when bone marrow was substituted with water. Moreover, reflection from the surface of the sample increased ( p < 0.01) and backscatter from internal structures decreased ( p < 0.01) after removal of marrow. The effect of bone marrow on the acoustic properties was stronger in samples with low bone volume fraction. The present results indicate that the amount and quality of bone marrow significantly influence the acoustic properties of trabecular bone. Possible interindividual differences in the composition of bone marrow may increase uncertainty in clinical ultrasound diagnostics of osteoporosis. Importantly, the effect is most significant in osteoporotic low-density bone. (E-mail: Antti.Aula@uku.fi)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.