Abstract

The effect of bonding temperature and bonding time on the microstructure of transient liquid phase (TLP) bonding named GTD111 and IN718 superalloys, using a commercial Ni–B–Cr filler alloy (BNi-2) interlayer were evaluated. The sandwich assembly was kept in a vacuum furnace at temperatures of 1050, 1100, and 1150 °C for 1, 15, 30, 45, 60, and 80 min until the TLP process occurred. Microstructural characterization was carried out via optical microscopy, scanning electron microscopy (SEM) equipped with field emission energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Microstructural assessments displayed those in little bonding times, the joint microstructure includes continuous eutectic intermetallic phases and longer times cause eutectic free microstructure. The bonding temperature affects the isothermal solidification rate, while, at low bonding temperatures microstructure of the joint centerline is controlled by diffusion of melting point depressant (MPD) elements. Despite, at high bonding temperature effect of base metal alloying elements on the joint microstructure development was more marked. The results showed that athermally solidified zone (ASZ) size reduces with increasing bonding temperature and time due to diffusion of boron into the base metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call