Abstract

The structural model of 66.7PbO-33.3B2O3 glass was constructed using a reverse Monte Carlo (RMC) method, in which bond valence sum (BVS) was added as a constraint condition to suppress formation of unrealistic local structures. Based on the crystal structures, the optimal BVS calculating conditions were determined. As a result, BVS distributions with small deviation were successfully achieved without lowering the reproducibility of other experimental constraints. The geometric asymmetry of PbOn polyhedra was evaluated from the eccentric distance between Pb and gravity center of oxygen atoms. The average eccentric distance was shorter than that in the lead borate crystals, indicating less asymmetry of PbOn units in the RMC glass model. The connectivity between BOn and PbOn units was investigated. It was consequently concluded that the glass had a different network structure from the crystal with the same composition, which might be due to the different chemical bonding character between the lead borate glasses and crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call