Abstract

Several materials are utilized in the production of bolus, which is essential for superficial tumor radiotherapy. This research aimed to compare the variations in dose deposition in deep tissues during electron beam radiotherapy when employing different bolus materials. Specifically, the study developed general superficial tumor models (S-T models) and postoperative breast cancer models (P-B models). Each model comprised a bolus made of water, polylactic acid (PLA), polystyrene, silica-gel or glycerol. Geant4 was employed to simulate the transportation of electron beams within the studied models, enabling the acquisition of dose distributions along the central axis of the field. A comparison was conducted to assess the dose distributions in deep tissues. In regions where the percentage depth dose (PDD) decreases rapidly, the relative doses (RDs) in the S-T models with silica-gel bolus exhibited the highest values. Subsequently, RDs for PLA, glycerol and polystyrene boluses followed in descending order. Notably, the RDs for glycerol and polystyrene boluses were consistently below 1. Within the P-B models, RDs for all four bolus materials are consistently below 1. Among them, the smallest RDs are observed with the glycerol bolus, followed by silica-gel, PLA and polystyrene bolus in ascending order. As PDDs are ~1-3% or smaller, the differences in RDs diminish rapidly until are only around 10%. For the S-T and P-B models, polystyrene and glycerol are the most suitable bolus materials, respectively. The choice of appropriate bolus materials, tailored to the specific treatment scenario, holds significant importance in safeguarding deep tissues during radiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call