Abstract

Compensatory stepping is an important protective mechanism to prevent falling. To recover from sideways perturbations side steps are generally more advantageous than cross-over steps. However, there is lack of understanding of the characteristics of compensatory side steps following sideways perturbations that separate successful recoveries (i.e., no falls) from falls, the most clinically relevant outcome following a balance perturbation. We aimed to identify the critical determinants for successful side stepping after large sideways balance perturbations. Twelve healthy young adults were subjected to large leftward perturbations at varying intensities on a translating sheet. For recovery attempts started with a side step, we determined body configuration variables (frontal-plane leg and trunk angle) at first step contact, as well as spatiotemporal step variables (onset, length, duration, velocity). A logistic regression analysis was conducted to determine the predictive ability of body configuration and spatiotemporal variables on the probability of success (no fall vs. fall); perturbation intensity (peak jerk of translating sheet) and a random effect for individual were also included in the model. In the final model, leg angle and peak jerk were retained as predictors of successful balance recovery and these variables correctly classified the recovery outcome in 86% of the trials. This final ‘body configuration’ model yielded a −2 log likelihood of −36.3, whereas the best fitting model with only spatiotemporal variables yielded a −2 log likelihood of −45.8 (indicating a poorer fit). The leg angle at a given perturbation intensity appears to be a valid measure of reactive side step quality. The relative ease of measuring this leg angle at step contact makes it a candidate outcome for reactive stepping assessments in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call